- 21. A radiation of energy 'E' falls normally on a perfectly reflecting surface. The momentum transferred to the surface is (c = velocity of light)
 - A. E
 - B. 2E
 - C. 2E
 - D. $\frac{E}{c^2}$

Ans-(B)

The radiation energy is given by

$$E = \frac{hc}{\lambda}$$

Initial momentum of the radiation is

$$P_i = -\frac{h}{\lambda} = -\frac{E}{c}$$

The reflected momentum is

$$P_r = -\frac{h}{\lambda} = -\frac{E}{c}$$

So, the change in momentum of light is

$$\Delta P_{light} = P_r - P_i = -\frac{2E}{c}$$

Thus, the momentum transferred to the surface is

$$\Delta P_{light} = \frac{2E}{c}$$